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Objectives

What do we want from the discretizations?

@ preserve and mimic mathematical properties of physical systems;
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@ preserve and mimic mathematical properties of physical systems;

™ be accurate on adaptive smooth and non-smooth grids;

What do we want from the discretizations?
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Objectives

What do we want from the discretizations?

@ preserve and mimic mathematical properties of physical systems;

™ be accurate on adaptive grids;

® be applicable to a large family of grids and operators.
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Consider the mathematical identity:

/gradpfdv: —/ div f pdv VF € Hy(Q), p € Hj (Q).
Q Q

Support-operators (SO) methodology (for div & grad):
1. define degrees of freedom for the physical variables (p, f);
2. equip each of the discrete spaces with a scalar product ([, -|o, [, | x);

3. choose a discrete approximation to the divergence operator (the prime
operator DIV : Xg — Qq);

4. derive the discrete approximation of the gradient operator from the Green
formula (the derived operator GRAD: Q4 — X ) s.t. the following
discrete identity is enforced:

[f% GRADp%x = —[DIV % p%o  Vp? € Qq, %€ Xa.
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Mimetic discretizations (1/6)

Consider the mathematical identity:

/gradpfdv: —/ div f pdv VF € Hy(Q), p € Hj (Q).
Q Q

Support-operators (SO) methodology (for div & grad):
1. define degrees of freedom for the physical variables (p, f);
2. equip each of the discrete spaces with a scalar product ([, -|o, [, | x);

3. choose a discrete approximation to the divergence operator (the prime
operator DIV : X; — Qq);

4. derive the discrete approximation of the gradient operator from the Green
formula (the derived operator GRAD: Q4 — X ) s.t. the following
discrete identity is enforced:

[f% GRADp%x = —[DIV % p%o  Vp? € Qq, %€ Xa.
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Mimetic discretizations (2/6)

Applications of the SO methodology include:

W Electromagnetics: discrete operators DIV, GRAD, CURL and CURL
mimic:

div curl = 0, curl grad = 0

/curlE-dev:/curlH-Edfu—l—% (Ex H)-nds
Q Q 1Y)

W CFD: discrete operators DIV and GRAD mimic:

/gradu:Tdv:—/divT-udfu-l—]{ u- (T -n)ds
Q Q o0

@ Gas dynamics, poroelasticity, magnetic diffusion, etc...
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Mimetic discretizations (3/6)

W Let Q4 be a vector space of cell-centered discrete scalar functions with the
scalar product

p q Q - Z ‘6Z|pz q'z vpda qd € Qd-

@ Let X4 be a vector space of discrete edge-based vector functions with a
scalar product | fd, g% x. The vector function f 4 is recovered exactly
at four vertices of quadrilateral e;. Let

[fz7gz Z|6U|K fzg gz]
_7 1
N
Then Z (fe g% x
=1
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Mimetic discretizations (3/6)

W Let Q4 be a vector space of cell-centered discrete scalar functions with the
scalar product

p q Q - Z ‘6Z|pz q'z vpda qd € Qd-

@ Let X4 be a vector space of discrete edge-based vector functions with a
scalar product | fd, g% x. The vector function f 4 is recovered exactly
at four vertices of quadrilateral e;. Let

d >

f, 1 o
d d —1 pd d
\ [fiagi]X,i:§Z|eij|Ki 1fz’j'gij
j=1
N
Then Z fza gz
1=1
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Mimetic discretizations (3/6)

W Let Q4 be a vector space of cell-centered discrete scalar functions with the
scalar product

p q Q - Z ‘6Z|pz q'z vpda qd € Qd-

@ Let X4 be a vector space of discrete edge-based vector functions with a
scalar product | fd, g% x. The vector function f 4 is recovered exactly
at four vertices of quadrilateral e;. Let

4
1
d — d
£ gllxi = 5 D lew| KU F5 - o,
J=1
N
Then Z fza gz
1=1
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Mimetic discretizations (3/6)

W Let Q4 be a vector space of cell-centered discrete scalar functions with the
scalar product

p q Q - Z ‘6Z|pz q'z vpda qd € Qd-

@ Let X4 be a vector space of discrete edge-based vector functions with a
scalar product | fd, g% x. The vector function f 4 is recovered exactly

£ at four vertices of quadrilateral e;. Let
i3
/4
;A
d d —1pd _d
fi 95 1x: = 2 Z eij| K .fij "4
j=1
N
Then Z (fe g% x
=1
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Mimetic discretizations (4/6)

The prime operator DIV is derived from the Gauss
theorem:

1
divf = lim — f-ndl.

le]—0 |e| Jae

Center-point quadrature gives

1

z'_ |61‘

( z%‘l2|_ chl|l4‘+ z%|l3|_ gl |l1‘>

(DIV e )
The derived operator GRAD is implicitly given by

[f% GRADp%x = —[DIV £, p¥o  Vp? € Qq, f* € X4
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Mimetic discretizations (5/6)

The stationary diffusion problem

—divKVp = b in (Q
p = 0 on 09

1s rewritten as the 1st order system
f=—KVp, divf =0
and discretized as follows:

f2=_GRADp? DIV f¢ =p?.
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Mimetic discretizations (6/6)

By the definition,
%, GRAD p?]x = —[DIV £%, p9q.
Let < -, - > be the usual vector dot product. Then
p? qd]Q —< Dp?, ¢ >, [fd’ g% x =< M gd > .
Combining the last two formulas, we get

f¢, GRADpYx = < M f% GRADp? >
= —[DIVfY p¥o = — < f4 DIVEDp? > .

Therefore,
GRAD = — M~ 1 DIV D.

1s the non-local operator.
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Connections with FE methods (1/5)

The system of finite difference equations
f2=_GRADp?, DIV f¢ =1p?
can be rewritten as

[fda gd]X + [GRADpd, gd]X =0,
DIV £¢, ¢%]¢ = [b%, ¢%q.
Recall that by the definition,

[f%, GRAD pi|x = —[DIV f%, p¥o.
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Connections with FE methods (2/5)

Thus, the mimetic discretizations are equivalent to

%, 9%x — DIV £, p¥q

~[DIV £%, ¢%o = b9, ¢Yg,  Vp? € Qq, g¢ € X4

I
=

On the other hand, the MFE method with the Raviart-Thomas elements gives

—(div £", ¢") =—(b, ¢") V¢" € Qn, g" € Xp.
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Connections with FE methods (2/5)

Thus, the mimetic discretizations are equivalent to

%, 9%x — DIV £, p¥q

~[DIV £%, ¢%o = b9, ¢Yg,  Vp? € Qq, g¢ € X4

I
=

On the other hand, the MFE method with the Raviart-Thomas elements gives

—(div £", ¢") =—(b, ¢") V¢" € Qn, g" € Xp.

p%:  at cell centers one per cell

Degrees of freedom: p
f7: normal components at edge centers normal compone
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Connections with FE methods (3/5)

There are isomorphisms Zx and isometry Zg:
IX:Xd—>Xh, ZQ:Qd%Qh-

Properties:

=Y qto =" "), " =Zo0?), ¢" = Io(q?)
m DIV £ plg = (div £, p?), P =TIx(f7)

m Y glx = (KU g +0(h), g" =1Ix(g9)

Therefore [f%, g% x may be considered as a quadrature rule for (K1 f", g").
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Connections with FE methods (4/5)

Theorem.

Suppose Tj, is either a shape regular triangular or a quasi-uniform guadrilateral
partitioning of € and input data are sufficiently smooth. Denote the solution of
the finite difference method by (f, p?), and set

" =Zx(fY, " =Tom?h.

Then, the following error bounds hold

f = Fllaiv,0 < Ch {IIfll + [1div £l1 3,

p—p"lle <Ch{lpli+I[fll},

with a positive constant C' independent of h.
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Connections with FE methods (5/5)

s Los Alamos
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h—1 modified RT FE SO FD

Ep Ef Ep Ef
16 || 1.58e-3 | 2.34e-2 || 1.61e-3 | 2.35¢-2
32 || 7.95e-4 | 1.22e-2 || 7.99e-4 | 1.22e-2
64 || 3.98e-4 | 6.29¢-3 || 3.99e-4 | 6.29¢-3
128 || 1.99e-4 | 3.22e-3 || 1.99e-4 | 3.22e-3
256 || 9.97e-5 | 1.64e-3 || 9.97e-5 | 1.64e-3
512 || 4.98e-5 | 8.32e-4 || 4.98¢e-5 | 8.32e-4

Ep Ef Ep Ef
16 || 1.42e-3 | 2.24e-2 || 1.43e-3 | 2.25e-2
32 || 7.15e-4 | 1.17e-2 || 7.18e-4 | 1.17e-2
64 || 3.59e-4 | 5.96e-3 || 3.59e-4 | 5.98¢-3
128 || 1.80e-4 | 3.06e-3 || 1.80e-4 | 3.07e-3
256 || 9.00e-5 | 1.56e-3 || 9.00e-5 | 1.56e-3
512 || 4.50e-5 | 7.93e-4 || 4.50e-5 | 7.93e-4
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Mimetic discretizations (1/4)

The SO method mimic the mathematical identity

/f'gradp-l-/dinP:/pf'n'

e Oe

4. at cell centers and edge centers
Degrees of freedom:

% normal components at edge centers
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Mimetic discretizations (2/4)

The prime operator DIV is derived from the Gauss theorem:

(DIV f%); = (flallirl + forllir| + fo|lic] + fi51liB])

1
€3
Derivation of the discrete identity:

O /f .gradpdz ~ [f%, (GRAD p%);]x,

] /divfpdx% (DIV £%); p¥ |ei]

€4

O /pf'ndszprfz%|liR| + plr forllir| + Pl f i) + pip fisllis)
8ei
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Mimetic discretizations (3/4)

Replacing integrals in the Gauss-Green formula by their approximations, we get

( lir

(GRAD p?); = M1

1

where
£ g% x, =< M f¢, g >

and f¢ = ( R OfL L £B)t The local discretization reads

(DIV f4), = b
fc'l = —(GRADPd)z'-

1
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Mimetic discretizations (4/4)

oo v

The global discretization is achieved by imposing the continuity of fluxes

d _  od
iR — 5L
and interface intensities
d _ d
Pir = P;L-
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AMR grids (1/3)

The global discretization is achieved by imposing the continuity of fluxes

d
iR — _]L — —ka

and interface intensities

lir| pir = |le|P§'iL + ez | Pl
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! [ N € €
0.9 b f
08 AMR grids
: 0 256 7.00e-2  8.18e-2
B 1 556 1.64e-2  3.42e-2
° et 2 988  3.74e-3  1.74e-2
3| 3952 9.96e-4 7.57e-3
o 4 | 15808 2.40e-4  3.79e-3

O0 0.2 0.4 0.6 0.8 1

Uniform grids

T 0 256  7.00e-2  8.18e-2

i Lot R H :
ol i 1| 1024 1.79e-2  3.40e-2
i e . 2 | 4096 391e-3  1.62e-2
os PRI ' 3 | 16384 9.4de-4  7.30e-3
B B 4 | 65536 2.32e-4  3.76e-3
0.2: O i —‘I it 1 5y :. 2 2

e i (z — 0.5)2 + (y — 0.5) )

1 R x, y) = 1 —tanh :

O;1 “_l_ | i :T‘ :ﬁ i p( y) ( 0.01
0 0.2 0.4 0.6 0.8 1
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AMR grids (3/3)
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we proved convergence of mimetic discretizations for the linear diffusion
equation; the convergence rate is optimal;

the mimetic discretizations based on the SO methodology and FE methods
are closely related for the case of triangular (or quadrilateral) conformal
meshes and diffusion problems;

the above relationships are extended to AMR triangular and quadrilateral

meshes;

the numerical experiments on general polygonal meshes show the optimal
convergence rate for mimetic discretizations;

superconvergence error estimates on triangular and quadrilateral meshes
can be proved using the relationships mentioned above.
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